I Scream, You Scream, We All Scream!

Standardizing and refining your processes for success with distance learning.

Presenter: Daron Martin

Pre-Assessment!!!

()	A.	Yes,	la	pro!

B. No, I'm not sure how I survived!

How to Edit

Click Edit This Slide in the plugin to make changes.

A. 1 (Horrible)
○ B. 2
C. 3
O. 4
E. 5 (Great)

How to Edit

Click Edit This Slide in the plugin to make changes.

Don't have the Nearpod add-on? Open the "Add-ons" menu in Google Slides to install.

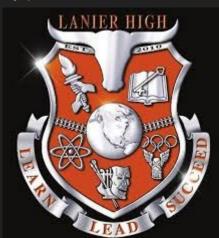
Open Ended Question

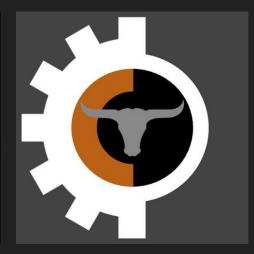
What percent of your online/office hours were spent trouble shooting technology and/or locating assignments?

How to Edit

Click Edit This Slide in the plugin to make changes.

Biggest barriers to distance learning?


How to Edit


Click Edit This Slide in the plugin to make changes.

My Background....

- Woodrow Wilson % '15 Georgia
- Gwinnett County Public Schools / Large very diverse district
- STEM focused Chemistry and PBL Astronomy
- Project-Based Learning...no flipped class experience
 - Digital collaboration techniques from industry partners
- District Approved Platforms
 - eCLASS (Blackboard platform)
 - Google Classroom

K.I.S.S.

- Went into this time with two goals
 - O How can I keep this as simple a possible for myself?
 - How can I help as many of my students as possible interact with the content in a meaningful

way?

Gwinnett County Public Schools 9-12 Chemistry – Instructional Calendar 2019-2020						
4 th Nine Weeks						
Acids and Bases	Thermochemistry	Kinetics	Gases			
2 weeks	3 weeks	2 weeks	2 weeks			
5. obtain, evaluate, and communicate	6. obtain, evaluate, and communicate	7. obtain, evaluate, and	6. obtain, evaluate, and communicate			
information about the properties that	information about the Kinetic Molecular	communicate information about how	information about the Kinetic			
describe solutions and the nature of	Theory to model atomic and molecular	to refine the design of a chemical	Molecular Theory to model atomic and			
acids and bases	motion in chemical and physical	system by applying engineering	molecular motion in chemical and			
5g. ask questions to evaluate merits and	processes	principles to manipulate the factors	physical processes			
limitations of the Arrhenius and Brønsted-	6a. plan and carry out an investigation to	that affect a chemical reaction	6c. develop and use models to			
Lowry models of acid and bases	calculate the amount of heat absorbed or	7a. construct an argument using	quantitatively, conceptually, and			
5h. use mathematics and computational	released by chemical or physical	collision theory (activation energy,	graphically represent the relationships			
thinking to compare, contrast, and	processes (Clarification Statement:	orientation, nature of reactants) and	between pressure, volume,			
evaluate the nature of acids and bases in	Calculation of enthalpy, heat change	transition state theory to explain the	temperature, and number of moles of a			
terms of percent dissociation, hydronium	(calculate heat and temperature), and	role of activation energy in chemical	gas (i.e. Boyle's, Charles', Gay-Lussac's,			
ion concentration, and pH (Clarification	Hess's Law (simple two step reaction that	reactions	and Ideal Gas Law)			
Statement: understanding the	only requires addition are addressed in	7b. construct an explanation of the	6f. Honors Extension: use mathematics			
mathematical relationship between	this standard - no flipping or multiplying	effects of a catalyst on chemical	and computational thinking to			
negative logarithm of the hydrogen	of reactions.)	reactions and apply it to everyday	determine Dalton's Law of partial			
concentration and pH is not expected in	2g. develop a model to illustrate that the	examples	pressures			
this element. Only a conceptual	release or absorption of energy	7c. plan and carry out an investigation	4h. use mathematics and computational			
understanding of pH as related to	(endothermic or exothermic) from a	to provide evidence of the effects of	thinking to apply concepts of the mole			
acid/basic conditions is needed.)	chemical reaction system depends upon	changing concentration, temperature,	and Avogadro's number to			
5i. plan and carry out an investigation to	the changes in total bond energy	and pressure on chemical reactions	conceptualize and calculate molar			
explore acid-base neutralization	6b. construct an explanation using a	(Clarification statement: pressure	volume of gases			
51. Honors Extension: calculate pH, pOH,	heating curve as evidence of the effects	should not be tested experimentally.)				
[H+] AND [OH-]	of energy and intermolecular forces on	7d. refine the design of a chemical				
5m. Honors Extension: plan and carry out	phase changes (Clarification Statement:	system by altering the conditions that				
a titration investigation	Students should be able to justify the	would change forward and reverse				
2h. ask questions about chemical names	presence of plateau(s) on the curve.)	reaction rates and the amount of				
to identify patterns in IUPAC	6d. Honors Extension: explore Hess's Law	products at equilibrium (Clarification				
nomenclature in order to transition	with flipping and multiplying reactions	Statement: emphasis is on application				
between the chemical names and	6e. Honors Extension: use mathematics	of Le Chatelier's principle.)				
formulas of acidic compounds	and computational thinking to complete					
	multistep enthalpy calculations through					
	phase changes from solids to gases					
	(Gibb's free energy will not be assessed)					

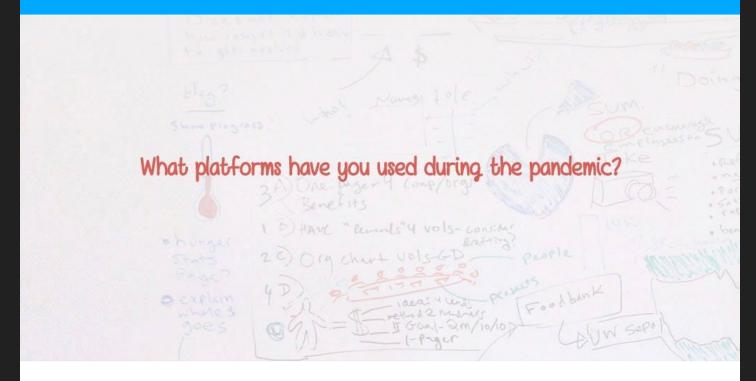
How to Edit

Click Edit This Slide in the plugin to make changes.

Don't have the Nearpod add-on? Open the "Add-ons" menu in Google Slides to install.

What was I to create?

- I decided that instructional videos.
 - Normalcy
 - Huge impact!
 - Content Control
 - Model Processes
- Quizzes
 - Small/frequent checks
 - Easy feedback
- Lab/inquiry experiences
 - Create models
 - Experiments
 - Simulations



How, was I to create?

- Rely on teacher teams!
 - Common course teams
 - Load (more thoughtful robust lessons)
 - Feed back
 - Remediation
 - Play to strengths of the group
 - Interdisciplinary Teams
 - Flexibility
 - Accountability
- Utilize Mastery-based assignments
 - "Compassion vs. Compliance"
 - Create assignments that allow students to review and show mastery of past standard.

How to Edit

Click Edit This Slide in the plugin to make changes.

Where?

- Same place EVERY. SINGLE. DAY.
 - Choose a platform that meets your needs and use it every time. (Google Suite/County platforms/Google sites/Class Blog/etc.)
 - Announcements/Alerts
 - Post a variety of resources
 - Accessible on a variety of devices.
- Hyperlink, Hyperlink, Hyperlink
 - Minimizes confusion in finding a variety of resources

۸	Most	of	thom
м.	MIOSE	UI	mem

B. About half

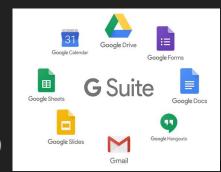
C. Very few

How to Edit

Click Edit This Slide in the plugin to make changes.

	Α	Van
1 1	A.	Yes

B. No


How to Edit

Click Edit This Slide in the plugin to make changes.

How can I ensure the most students have access?

- Make sure to use resources that are available via smart phones
 - Instruction
 - Youtube video/ .mp4 or .MOV
 - Google slides pdf Slides
 - ZOOM (synchronous and asynchronous)
 - Quizlet
 - Nearpod (what this presentation is using)
 - Assignments
 - Google Form (quizzes)/doc
 - Phet simulations
 - Nearpod
 - Padlet

